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Neural networks are dense in the space of dynamical systems. We present a Monte Carlo study
of the dynamic properties along the route to chaos over random dynamical system function
space by randomly sampling the neural network function space. Our results show that as
the dimension of the system (the number of dynamical variables) is increased, the probability
of chaos approaches unity. We present theoretical and numerical results which show that as
the dimension is increased, the quasiperiodic route to chaos is the dominant route. We also
qualitatively analyze the dynamics along the route.

1. Introduction

The study of complex systems over the past few
decades has led to many interesting and diverse re-
sults. The dynamics encountered in many differ-
ent systems occurs across diverse disciplines. This
apparent similarity in dynamics has motivated our
Monte Carlo study of dynamical systems using neu-
ral networks, since neural networks are dense in
the set of continuous functions on a bounded in-
terval. We investigate the general dynamic prop-
erties, including the probability of chaos, and the
power spectrum. As the dimension is increased,
the probability of chaos approaches unity. With
this in mind, we study the route to chaos as the
connection strengths are increased. Numerically we
find that as the dimension is increased the proba-
bility of the first bifurcation being Hopf increases to
near unity. Based on observing the bifurcation dia-
grams of hundreds of networks, we conject that the
quasiperiodic route dominates at high dimension.
Besides the evidence and conjectures put forth by
Doyon et al., [1993] and Brock [1997] regarding very

general systems, there is evidence that some spe-
cialized systems such as coupled map lattices and
coupled identical period-doubling systems also tend
to, or do undergo the quasiperiodic route to chaos
[Wang & Cerdeira, 1996; Reick & Mosekilde, 1995].

2. Bifurcation Theory and
Chaotic Dynamics

Define X to be an open subset of a Banach space,
E. Next set I = [a, b] ∈ R. Now define the map
fµ : X 7→ E for µ ∈ I, thus forming a param-
eterized family of maps for which µ is the bifur-
cation parameter. Define µ0 ∈ I such that fµ0

has a fixed point at x0 ∈ X. Define Γ such that
Γ = {(µ, x) ∈ I × X : fµx = x}. Now, suppose
that (µ0, x0) ∈ Γ, where x0 is not hyperbolic. A
bifurcation occurs where Dx0fµ0 has a eigenvalue
on the unit circle. There are three generic ways
this can occur, (and hence three generic bifurca-
tions): Flip, where a negative real eigenvalue lies
on the unit circle (Dx0fµ0 = −1), (this corresponds
to a period-two oscillation); saddle-node, where
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a positive real eigenvalue lies on the unit circle
(Dx0fµ0 = 1), (this corresponds to the appearance
of two branches of stable equilibria); and Hopf,1

where a complex conjugate pair of eigenvalues lie
on the unit circle (Dx0fµ0 = |a ± bi| = 1, b 6= 0),
(this corresponds to the appearance of a limit cycle
or torus). The three types of bifurcations described
above are generic when Γ is a nonsingular smooth
curve. We have yet to impose any symmetry groups,
but it should be noted that the presence of symme-
try groups changes which bifurcations are generic
[Ruelle, 1989].

A “route to chaos” is the path of bifurcations
that a system undergoes from a steady state to a
chaotic state as a control parameter is varied. Since
we are only concerned with the generic bifurcations,
all our routes to chaos must follow combinations of
them. The main theme of this study is determining
the most likely first bifurcation along this route for
a random system. We also concern ourselves with
the general dynamics along the route, in the chaotic
regime, and then the transition out of chaos at very
large values of the control parameter. For our pur-
poses, we will define a system to be chaotic if its
largest Lyapunov exponent is positive.

3. General Neural Networks

Single layer feed-forward neural networks of the
form

f(y) =
n∑
i=1

βiφ

sωi0 + s
d∑
j=1

ωijyj

 (1)

where f : Rd → R, with arbitrary squashing func-
tions φ, can uniformly approximate any continu-
ous function on any compact set, and any mea-
surable function arbitrarily well, given a sufficient
number of hidden units [Hornik et al., 1989]. In
Eq. (1), n represents the number of hidden units
or neurons, d is the embedding dimension of the
system which for our purposes is the number of
time lags, and s is a scaling factor on the weights.
The function φ represents a neuron or activation
function. If φ ∈ Smp (R, µ), (i.e. is made up of
functions in Cm(U) having derivatives up to or-
der m and Lp(U, µ)-integrable), and does not van-
ish everywhere, then Eq. (1) can approximate any

function belonging to C∞(Rr) and its derivatives up
to order m arbitrarily well on compact sets [Hornik
et al., 1990]. In general the parameters are set in
the following way:

βi, wij, yj, s ∈ R (2)

where the βi’s and wij’s are elements of weight
matrices (which we hold fixed for each case),
(y0, y1, . . . , yd) represent initial conditions, and
(yt, yt+1, . . . , yt+d) represent the current state of
the system at time t. For our purposes we shall as-
sume that the functions are sufficiently smooth such
that the system dynamics are representable by an
element of C2(M, M), the set of twice continuously
differentiable functions from a compact manifold,
M , of dimension m into itself. These dynamical
systems are of the form

xt+1 = F (xt) (3)

where F : M → M and xt ∈M . For our purposes,
we use a single neural network to generate a “time-
series” of scalar data. A neural network forms a
dynamical system on Rd by:

yt = f(yt−d, yt−d+1, . . . , yt−1) (4)

where yt ∈ R. Systems of the form Eq. (4) are
equivalent to systems of form of Eq. (3) since Eq. (3)
can be stated via a mapping of Rd to itself:

(y1, y2, . . . , yd)→ (y2, y3, . . . , f(y1, y2, . . . , yd)) .

(5)

Thus they form a subset of the d-dimensional
dynamical systems. Takens [1980] has shown that
systems of the form of Eq. (3) are diffeomorphisms
that embed (generically) in Rd for some d ≤ 2m+1.
Thus, there is an open and dense set of dynamical
systems, each element of which is topologically con-
jugate to a system of the form of Eq. (4). These
latter systems can be uniformly approximated (on
compacta) by neural networks.

The significance of uniform approximation to
our work is considerable. In this study we are
considering a function space and then attempting
to gain insight into the physical world based on
the dynamics of that function space. There are
two main considerations; whether functions from

1Hopf proved the bifurcation theorem for vector fields; the “Hopf bifurcation for maps” was proved independently by Naimark
[1959] and Sacker [1965]. To avoid confusion we will refer to the Naimark–Sacker bifurcation as Hopf.
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our class mimic any dynamical system, and whether
our method of sampling is representive of that class
of dynamical systems. The answer to the former
is the uniform approximation put forth by Hornik
et al. [1989]. A discussion of the latter follows.

3.1. Our networks

For the purpose of our study we consider networks
of the form:

yt =
n∑
i=1

βi tanh

sωi0 + s
d∑
j=1

ωijyt−j

 (6)

which is identical to Eq. (1) with the hyperbolic tan-
gent taken as the squashing function, which, belong-
ing to Smp (R, µ), is general. As previously stated,
the β and w matrices are held fixed; s is held fixed
for the probability of chaos study and also used as
the bifurcation parameter. We pick the β’s iid uni-
form over [0, 1], and then re-scale them to satisfy
the following condition:

n∑
i=1

β2
i = n (7)

The wij’s are picked iid normal with zero mean and
unit variance. The s parameter is a real number,
and it can be interpreted as the standard devia-
tion of the w matrix of weights. The initial yj’s are
chosen iid uniform on the interval [−1, 1]. All the
weights and initial conditions are selected randomly
using a pseudorandom number generator [l’Écuyer,
1988; Press et al., 1992]. Iterating Eq. (6) gives a
time-series whose dynamics we investigate.

The specific conditions used to pick the weights
has an important effect on the dynamics. First,
tanh(x), for |x| � 1 will tend to behave much like
a binary function. Since binary functions have a fi-
nite number of states and must repeat, such systems
cannot be chaotic. Therefore, if β or s become very
large, the system will have a greatly reduced ability
to be chaotic. There is a simple reason for the im-
posed condition on the β’s as opposed to something
like:

n∑
i=1

|βi| = k (8)

where k is a fixed constant. If the βi are restricted
to a sphere of radius k, as n is increased, 〈βi2〉 goes
to zero [Albers et al., 1996]. Also, since the tanh(x)
function is nearly linear when |x| � 1, choosing s to
be small will force the dynamics to be mostly linear,

again inhibiting chaos. As d is increased, the effect
of any given wij decreases, making high-d networks
with and without a bias term, wi0, very similar.

3.2. How we sample the space

The generality of the results presented hinges on
how we sample the space of neural networks and
how that is related to the space of dynamical sys-
tems. First we must deal with how we are sam-
pling the neural network function space in accor-
dance with uniform approximation. Since we are
dealing with a finite sample, the set we are study-
ing is a set of measure zero of functions. What is
more important is the method used to sample the
space. Within the class of neural networks with
the β’s scaled as in our study with the wij’s such
that wij ∈ (−12, 12), (because of the approxima-
tion used to generate normally distributed weights),
we produce a countable dense subset of the neural
networks. A harder question is whether our sam-
pling method gives a dense subset of a larger class
of functions, (specifically dynamical systems). To
answer this we would need to establish a specific
norm on this larger class of functions. This is dif-
ficult. After establishing this norm, we would need
to show that our neural networks are dense in that
norm, and then that our sampling method is dense
in our class of neural networks. The latter is not a
problem; the previous two are. For this reason, the
results at this point are suggestive of what dynam-
ical system space is like. We demonstrate phenom-
ena that are possible, and show just how complex
things can get with a limited number of dimensions.
None of our results can be generalized to the entire
space of dynamical systems since we do not know
what part of the dynamical system function space
we are sampling. In this paper we use words like
“typical” or “on average” with respect to the space
of neural networks we are considering.

3.3. Networks without bias terms

Doyon et al. [1993] considered networks with di-
mensions starting near the upper range of our study
(d = 1024). All the networks they considered were
similar to the ones we studied but with wi0 = 0.
Although their networks and our networks are dif-
ferent, they are in many ways dynamically equiv-
alent. Excluding the bias term decreases the gen-
erality of the uniform approximation, but not the
dynamics. Consider the following example; in
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Eq. (6), wi0 = 0 ∀i. By doing this, Eq. (6) can only
uniformly approximate odd functions. If we map
the compact set I ⊂ R from [a, b] ∈ I to [0, ∞),
the dynamics are preserved, even though the ap-
proximating is lost. Since networks of the form of
Eq. (6) with and without bias terms are equiva-
lent over [0, ∞), the possible dynamics must also
be equivalent. There is a subtle difference, however,
in the genericity of bifurcations. Networks with no
bias terms impose an odd symmetry group, making
the pitchfork and not the saddle-node generic.

3.4. Convergence to attractors

Before presenting the numerical results, we discuss
briefly numerical errors and how they might affect
the results. Since chaotic attractors have a sensi-
tive dependence on initial conditions, and we only
keep d time lags, the exact original initial condi-
tions are lost in d iterations of the map, and all that
are left are points near the attractor within round-
off error. The shadowing lemma [Bowen, 1978;
Newhouse, 1980] helps ensure that the orbit remains
close to the attractor. We will give a version stated
in [Guckenheimer & Holmes, 1983]:

Shadowing Lemma: Let Λ be a hyperbolic in-
variant set. Then for every β > 0, there is an
α > 0 such that every α-pseudo-orbit xj; bi=a in Λ is
β-shadowed by a point y ∈ Λ.

The existence of this lemma is encouraging, but
in practice it is often very difficult to show a sys-
tem to be hyperbolic; and many systems are not
hyperbolic. In order to deal with this, Grebogi
et al. [1990] suggest a method of containment
guaranteeing a pseudo-orbit for nonhyperbolic sets.
This method consists of constructing parallelograms
that are oriented such that two sides are contracting
and two are expanding. There are inherent prob-
lems with this method; namely, when an angle of
the parallelogram is near zero the parallelogram ef-
fectively loses a dimension. These situations are
rare, and this method works rather well. We do not
use this method since it is numerically costly for the
benefit gained, as shown below.

The first bifurcation of all the systems we con-
sider is global. For brief substantiation, consider
the following argument. Map our networks to the
origin up to the first bifurcation. This can be
done without affecting the dynamics. We are now
considering the first bifurcation where the origin
loses its stability. The time-dependent terms of the

Jacobian of a system following the origin are:

ai =
n∑
i=1

βiswij sech2

s d∑
j=1

ωijyj

 (9)

which simplifies to

ai =
n∑
i=1

βiswij (10)

when yj = 0. Notice that the dependence on initial
conditions is gone and the eigenvalues are simply a
function of s. To verify that this works numerically,
we tested the results of the first bifurcation both for
cases where the bias terms were set to zero and for
those which were not. The resulting data were the
same within statistical error.

Beyond the first bifurcation this simple trans-
formation cannot apply. However, beyond the first
bifurcation we are only concerned with the probabil-
ity of chaos and qualitative analysis of the dynam-
ics. When the system is structurally stable, pertur-
bations do not affect the dynamics, so the only place
at which the qualitative dynamics are affected is the
chaotic region. Since we are not trying to mimic any
particular system, staying on the attractor is not as
critical, albeit we have considerable experimental
evidence that this is not a problem. We studied
several specific cases over a variety of initial con-
ditions, after various numbers of iterations. Corre-
lation dimensions and largest Lyapunov exponent
plots would overlay within experiment error, and
the bifurcation diagrams, if they did not directly
overlay, would dynamically overlay. (i.e. They were
periodic and chaotic in the same places with the
same features.) There are several cases where this
matter is of concern; they will be considered in the
following sections.

4. Numerical Results

4.1. Probability of chaos

The probability of chaos is the fraction of sys-
tems with positive largest Lyapunov exponent. We
choose the parameters n, d, and s between 1 and
256. Weights and initial conditions are as pre-
viously described. We calculate the largest Lya-
punov exponent by the following method [Wolf
et al., 1984]. First we randomly select an
initial point (y0, . . . , yd−1) and a nearby point
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(v0, . . . , vd−1) with a small separation ε at time t.
Define

∆yt = (yt − vt, . . . , yt+d−1 − vt+d−1) (11)

and let |∆y0| = ε. Both points are advanced one
time step, and the ratio

|∆y1|
|∆y0|

(12)

is recorded. The vector ∆y1 is then rescaled to a
length ε, and the new neighbor,

(v1, . . . , vd) = (y1, . . . , yd) + ∆y1 (13)

is advanced one time period along with (y1, . . . , yd).
This process is repeated, and the largest Lyapunov
exponent is estimated from the average of the log-
arithm of the scalings:

λ = t−1
t−1∑
l=0

ln
|∆yl+1|
|∆yl|

(14)

where t is the number of iterations of the map over
which the average is taken. We iterate the map a
set number of times (usually 100 000) before begin-
ning this calculation to help ensure that the orbit
is near the attractor.

Figure 1 shows the percentage of chaos in net-
works for varying n and d with s fixed at 8.
Notice that as d is increased, the probability of
chaos approaches unity; the same is true of n. The d
dependence does not change with the method used
to pick the weight matrices; the n dependence does.
The relatively straight contour lines are related to
the fact that we scale the β’s with n. In previ-
ous work [Albers et al., 1996] we assigned the βi’s
such that k = 1 in Eq. (8). The formulation in
Eq. (8) gives “C”-shaped contour lines that de-
pend on n. As stated in Sec. 3.1, as n is increased,
the individual βi’s go to zero, forcing the system
to be linear at high n. The important feature of
Fig. 1 is that as the available complexity (d) in-
creases the probability of chaos will always be high,
unless the system is binary or linear. The dip in the
first ten percent line in Fig. 1 is a numerical artifact
related to how the plotting program positions the
lines.

Figure 2 shows the percentage of chaotic net-
works for varying s and d with n fixed at 8. No-
tice the “C”-shaped contour lines; this would sug-
gest that the s parameter can be optimized for

Fig. 1. Probability of chaos contour plot for s = 8 and
various d and n.

Fig. 2. Probability of chaos contour plot for n = 8 and
various d and s.

maximum chaos. The s parameter works with the
βi’s to place the argument of the squashing func-
tion in different regions of the domain. For the hy-
perbolic tangent squashing function, the value of
x has a significant effect on the available dynam-
ics. As previously stated, the hyperbolic tangent
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function is linear when |x| � 1 and binary when
|x| � 1. Thus if the βi and s put the argument
into either region, neither chaos nor limit cycles are
possible.

4.2. The power spectrum

An interesting issue is the global topology of the
strange attractor that results from the chaotic high-
n, high-d systems and the power spectrum of the
associated dynamics. For this purpose a time se-
ries of 32 000 points was calculated for over a dozen
systems with n = 64, d = 512, and s = 8 after
5000 iterations to allow any initial transient to de-
cay. The power spectra typically have one or more
dominant incommensurate peaks and an approxi-
mately white (frequency-independent) background
three or four orders of magnitude below that of the
dominant frequency. Thus the global topology of
the attractor resembles a limit cycle or higher di-
mensional torus, perturbed (sometimes strongly) by
chaotic deviations. This behavior is confirmed in
correlation dimension plots that show low, presum-
ably integer, dimension on large scales, and an un-
measurably high dimension on smaller scales of the
attractor.

4.3. The basin of attraction and
initial conditions

The method used to pick initial conditions clearly
influences how well the results generalize. We have

determined through experiment that for one set of
parameter values, using different initial conditions
can usually produce several attractors. In prelim-
inary experiments, as the dimension is increased,
so are the number of attractors (we have seen as
many as 9 at d = 64). When s is small, say 0.0125,
there is only one attractor. As s is increased, the
number of attractors increases, until the squashing
function begins to saturate. As the squashing func-
tion approaches saturation the number of attractors
decreases until there is again one attractor.

Different methods of picking initial conditions
have different effects on the bifurcation diagrams,
but the first point of instability (i.e. the point we
call the first bifurcation) is a global bifurcation,
which is independent of initial conditions. Before
this bifurcation, there is only one attractor; a fixed
point. After this bifurcation the dynamics are most
often not global.

Figure 3 shows an interesting example of how
the structure of the basin can affect the dynam-
ics. As we increase the s parameter, not only does
the system bifurcate, but it is “riding the fence”
along a basin boundary between two attractors.
As we increase s, since we are re-initializing with
the same initial values, the system moves from one
basin into another. There is a difference between
“jumping” basins and bifurcation. A bifurcation
is a qualitative change in dynamics when a control
parameter is varied. What we call basin “jumping”
is not a function of a control parameter. Rather
this “jumping” occurs because of re-initializing the

Fig. 3(a). Bifurcation diagram for n = 64 and d = 4.
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Fig. 3(b). The Lyapunov exponent for n = 64 and d = 4.

network in another basin, or structural instability.
Figure 3(a) suggests three things: that most bifur-
cations are not global, that the positioning of the
initial conditions in the basin is very important, and
that understanding the underlying basin structure
is crucial if one wants to know how a system is ca-
pable of behaving. For each value of s, we use the
same initial conditions as for previous values of s.
If we were to choose new initial conditions for each
s, we would get a larger sampling of attractors.
This larger sampling tends to make the diagrams
look as though we had plotted several attractors at
once.

4.4. The first bifurcation

The first bifurcation of a system occurs where its
largest eigenvalue reaches the unit circle as some
parameter is varied. We choose to vary the s param-
eter since it acts like a gain on the weights, taking
the hyperbolic tangent from its linear range through
the nonlinear range and into its binary range. For
each case, we pick and fix the weights and initial
conditions, run the case for an s value, calculate
the eigenvalues and largest Lyapunov exponent, and
then increase s by a constant multiple (usually close
to one), re-initialize with the same weights and ini-
tial conditions, and repeat the process. When the
modulus of the largest eigenvalue reaches the unit
circle we decide what kind of bifurcation has oc-
curred and move on to the next set of weights and
initial conditions. This process was done over n and
d values ranging from 1 to 256.

To calculate the eigenvalues for a given system,
we create the Jacobian matrix:

a1 a2 a3 · · · ad−2 ad−1 ad

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

...
. . .

...

0 0 0 · · · 0 1 0


(15)

where:

ai =
n∑
i=1

βiswi0 sech2

sωi0 + s
d∑
j=1

ωijyj

 (16)

The eigenvalues of the above matrix are the
eigenvalues for the system. We begin each system
with an s value small enough such that the dynam-
ics are that of a stable fixed point. Then, as we
increase s, we push the system into the more non-
linear region of the squashing function, eventually
saturating it into a binary function.

Figures 3(a)–6(a) are bifurcation diagrams for
various n and d. In these figures the first 120 000 yt
values are discarded and the next 128 are plotted.
Each is a typical bifurcation diagram for its given
parameter values. Note that the meaning of typi-
cal or characteristic for one set of n and d values is
different from that of another set of n and d values.
There is more apparent variability in the dynamics
at low d than at high d. At high d most of the dia-
grams look alike. At low d the diagrams are erratic
but differ in detail.
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Figures 3(b)–6(b) show the largest Lyapunov
exponents corresponding to the Figs. 3(a)–6(a).
Note that as n is increased the plots become
smoother. From this plot alone it is not possible
to tell saddle-node from flip bifurcations or second
Hopf bifurcations from first Hopf. Chaos, however,
can be differentiated from limit cycles and periodic
orbits. The positive values indicate that the sys-
tem is chaotic. By looking at the corresponding (a)
and (b) figures, flips and saddle-nodes can be dif-
ferentiated; limit-cycles/tori and chaos can be dif-
ferentiated, and often second and third Hopfs can
be differentiated.

Figure 4(a) is a bifurcation diagram for n = 4
and d = 4. In this figure the first bifurcation hap-
pens to be a Hopf. Figure 3(a) is a bifurcation dia-
gram for n = 64, d = 4, and shows a typical saddle-
node first bifurcation. Figure 5(a), n = 4, d = 64,
shows a Hopf first bifurcation, as does Fig. 6(a),
(n = 64, d = 64). We will return to the dynamics
after the first bifurcation later.

Notice that as n is increased, the range of yt
values increases. This is due to the method used
to choose β’s. In general, as the dimension in-
creases, the bifurcation diagrams are more centered
and symmetric about the origin, almost as if there

Fig. 4(a). Bifurcation diagram for n = 4 and d = 4.

Fig. 4(b). The Lyapunov exponent for n = 4 and d = 4.
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Fig. 5(a). Bifurcation diagram for n = 4 and d = 64.

Fig. 5(b). Lyapunov exponent for n = 4 and d = 64.

were no bias term. This is because, as the number
of wij ’s is increased, the importance of the individ-
ual wij is decreased, thus the importance of each
bias term is decreased. This does not affect the re-
sults since there is no dynamical difference between
networks with and without bias terms (as stated in
previous sections).

4.4.1. A theoretical argument for
the first bifurcation

For random complex matrices, Girko [1983] proved
a circular law which states that as the dimension
of a matrix becomes large, the probability of en-

countering any real eigenvalues is zero. Given a
random matrix, the eigenvalues will be uniformly
distributed within the unit circle. Making the un-
wrought assumption that the set of Jacobians of our
systems are the same as a random sample of Girko’s
random matrices, we will put forth the following ar-
gument. The set of eigenvalues lying on any partic-
ular axis is of measure zero, thus the probability of
an eigenvalue being real is zero. Also, it would seem
that there is no difference between negative and pos-
itive, thus no reason to favor a positive versus a neg-
ative largest eigenvalue. Therefore, we should see
as many saddle-node bifurcations as flips. At low
dimensions we should see a much higher percentage
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Fig. 6(a). Bifurcation diagram for n = 64 and d = 64.

Fig. 6(b). Lyapunov exponent for n = 64 and d = 64.

of flips and saddle-node bifurcations because Hopf
bifurcations need an even number of roots with no
real eigenvalues since they occur in pairs. At low di-
mensions, arranging the roots such that they occur
frequently in even numbers, which is necessary for
complex solutions, is not as probable as at higher
dimensions. We briefly examined this numerically
for random Girko-like real matrices. As the dimen-
sion is increased the percentage of Hopf bifurcations
goes from 0 to about 90 percent for a dimension of
64. Given the aforementioned assumption, it would
be reasonable to assume that we would get approxi-
mately the same distribution. Note that since com-
plex eigenvalues occur in complex conjugate pairs,

given an odd dimension, at least one of the roots
must be real.

4.4.2. Numerical results

Figure 7 shows the percentage of each bifurcation as
the dimension is increased for an intermediate num-
ber of neurons. Much like the prediction above, the
Hopf’s start at about 40 percent of the first bifur-
cations at d = 2 and increase to almost unity at
large d. Also, notice that the percentage of flips
and saddle-nodes is, on average, equal throughout
the range.

Unlike the random matrix case, we also have to
deal with the n parameter. Figures 8 and 9 show
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Fig. 7. Percent first bifurcation for n = 16, error bars represent the error in the probability.

Fig. 8. Percent first bifurcation for n = 4, error bars represent the error in the probability.

the percentage of first bifurcation over an increasing
range of d at low and high n (n = 4 and n = 256).
Note at high-n and low-d, the percentage of each
bifurcation is nearly equal. For the low-n, low-d
cases, the percent of each bifurcation is not nearly
as close as at high-n. As d is increased, the percent-
age of Hopf bifurcations rapidly increases so that, at
d = 8, the percentages of each bifurcation is about
equal to those of all n.

The n dependence is an artifact of how we
choose the β matrix. Consider a two-dimensional
system. For a Hopf bifurcation to occur, the dis-
criminant must be negative. As we increase n, we
are increasing the variance of the coefficients of the

matrix, thus pushing the expected value of the dis-
criminant positive. The result is a decrease in Hopf
bifurcations as n is increased at low d. As d is
increased this effect is washed out. Contrasting
Figs. 7 and 8 you will notice that at d = 2 the
percentages of first bifurcations are quite different,
but for d ≥ 8, Figs. 7 and 8 are almost identical.

In the high-d limit, we found that the Hopf bi-
furcation was overwhelmingly dominant. We looked
at cases with d as high as 1024 and found the per-
cent of first Hopf bifurcations approached unity.
This confirms the result in [Doyon et al., 1993], that
in the limit of high d, the first bifurcation will be
Hopf.
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Fig. 9. Percent first bifurcation for n = 256, error bars represent the error in the probability.

4.5. Dynamics after
the first bifurcation

Quantitative results for the probability of a given
bifurcation after the first requires developing the
Q.R. algorithm [Eckmann & Ruelle, 1985] to allow
the tracking of quasiperiodic orbits. Tracking non-
periodic orbits involves multiplying the Jacobians
at each time step and renormalizing to calculate
the eigenvalues. The numerical stability of spe-
cific eigenvalues is not good when the number of
time steps is large. Although the stability of the
modulus of the largest eigenvalue is acceptable and
would probably allow us to know when the system
bifurcated, which eigenvalue crossed the unit cir-
cle would not be certain. For this reason we will
now present qualitative trends that occur in these
systems after the first bifurcation as gauged by
observing the largest Lyapunov exponent, period,
correlation dimension, and bifurcation diagrams of
hundreds of systems.

4.5.1. A conjecture for
the second bifurcation

Doyon et al. [1993] proved a corollary of Girko’s
theorem showing that the quasiperiodic route would
dominate when the dimension was high for their
maps. For our purposes, we will first argue for
flows and then adapt portions for maps. Consider
a flow on U that has undergone a Hopf bifurca-
tion and is now living on a limit cycle. Now take
a local cross-section V which is everywhere trans-
verse to the flow. Next induce a discrete-time map

P : U → V thus creating the “first” return map.
P is defined for a q ∈ U such that P (q) = ht(q)
where t is the time required for the orbit to return
to V . This mapping has a fixed point which is the
point q on the limit cycle. Considering the mapping
P , increase the bifurcation parameter of the original
flow and keep track of the eigenvalues of the Jaco-
bian of the discrete map. This will, on average, de-
scribe which bifurcation will occur. Apply Girko’s
circular law to the Jacobian of this map as we did
for the first bifurcation argument. For higher di-
mensions, consider a flow with dimension d. Instead
of taking a 1-D “line transverse”, cut the flow with
a hyper-surface (which will have dimension d − 1)
that is everywhere transverse to the flow. Map the
hyper-surface to itself. As above, increase the bifur-
cation parameter and look at the eigenvalues of the
Jacobian of the map. As d goes to infinity, apply the
circular law; most of the eigenvalues lie on the unit
disk. The set of real eigenvalues is a set of measure
zero with respect to the limiting Girko distribution.
Because the set of real eigenvalues has measure zero,
the second bifurcation must be Hopf. This sug-
gests that as the dimension is increased, the pre-
dominant route to chaos will be the quasiperiodic
route.

The argument for maps is somewhat different
because taking a Poincaré section for a map is more
difficult. First consider the Jacobian at each time
step as given by the aforementioned matrix A. Since
the probability that ai = 0, and thus the proba-
bility that ad is zero, the A matrix will have full
rank. If At has full rank ∀t, then none of the A
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matrices have eigenvalues that are equal to zero.
Since

det(
∏

At) = det(A1) det(A2) · · · det(At) (17)

and det(At) 6= 0 ∀t; det(
∏
At) 6= 0, and thus

∏
At

is nonsingular. From here we only need to apply the
circular law to the

∏
At to see that the quasiperi-

odic route will be dominant at high-d. Making the
original assumption rigorous is beyond the scope of
this paper [Brock, 1997].

4.5.2. Between the first bifurcation and chaos

As stated above, the dynamics change consider-
ably with d but not with n. The effect of n, for
all d considered, is just to “smooth” the dynam-
ics. The Lyapunov exponents are much more steady
and smooth, and the bifurcations are much more
apparent. Figures 3(b)–6(b) show typical largest
Lyapunov exponents over a range of s. Note that
the dynamic transitions in Fig. 5(b) at low-n are
much more “rough” than the changes in Fig. 6(b)
at high-n. The largest Lyapunov exponent does not
jump between positive and negative nearly as much.
This behavior is typical over the range of n that we
studied. However, n does not decrease the dynamic
diversity (types of transitions and bifurcations) of
a given network. Figures 3(a) and 4(a) show many
of the same phenomena and diversity even though
the number of neurons in Fig. 3(a) is much greater
than in Fig. 4(a).

At d = 4 about 40 percent of the first bifur-
cations are Hopf. After an initial Hopf bifurca-
tion, recognizing a second Hopf is quite difficult,
and they do not seem very frequent. More often
the second bifurcation appears to be a blue sky, out
of a quasiperiodic orbit and into a periodic orbit.
After this blue sky bifurcation the system either
Hopfs again, or period doubles to chaos [Fig. 4(a)],
or just becomes chaotic [Fig. 3(a)]. Occasionally the
system will oscillate between a quasiperiodic and a
periodic orbit several times before finally reaching
the chaotic region, but this usually occurs only for
low n. The other 60 percent of the bifurcations
are either flips or saddle-nodes. The only differ-
ence between the dynamics after a saddle-node and
after a flip is that the saddle-node sometimes will
jump from one branch of the fork to the other, pre-
sumably because the initial conditions lie close to a
basin boundary. Most often, after the flip or saddle-
node, the system’s next bifurcation is a Hopf. We
did see period-doubling cascades, but they were in-
frequent prior to the onset of chaos except at low d.

Increasing n increases the probability and strength
(magnitude of Lyapunov exponent) of chaos in the
system.

The effect of d on the system dynamics is quite
significant. As d is increased, the dynamic di-
versity is greatly reduced. Networks with high d
tend to be quite symmetric about the origin; this
is just an artifact of our method of choosing the
w matrix. The most notable effect of increas-
ing d is the increase of chaos for a given system.
Flip and saddle-node bifurcations are almost never
seen in high-dimensional networks. Also, once the
system has become chaotic, it very rarely shows
periodic windows until the s parameter is high
enough to saturate the squashing function. In high-
d systems, increasing n increases the range of the
function. Doyon et al. [1993] conclude that for
high-dimensional networks the second bifurcation is
Hopf. We also see this when the dimension is high,
but discerning chaos from limit cycles and tori is
often difficult from the bifurcation diagrams. The
Lyapunov exponent gives no insight if the second
bifurcation is Hopf, but at the onset of chaos, it
becomes positive. Doyon et al. [1993] also state
the quasiperiodic route to chaos dominates at high
d. Our results agree, but speculating on how many
bifurcations occur up to chaos is difficult.

4.6. The chaotic region

4.6.1. Bifurcation into chaos

The largest Lyapunov exponent for a nonchaotic
map equals the logarithm of the modulus of the
largest eigenvalue

λLyap = log |λeigen| (18)

For systems that follow the quasiperiodic route to
chaos as previously stated, it is very difficult to
track specific eigenvalues, making it difficult to dis-
cern which bifurcations occur into chaos. For the
same reason that it is difficult to calculate specific
eigenvalues for limit cycles, it is difficult to track
the eigenvalues in the chaotic region. We do track
the modulus of the largest eigenvalue numerically
(the Lyapunov exponent), which is used to distin-
guish chaos from limit cycles. In systems following
periodic routes, calculating the eigenvalues is dif-
ficult. What is normally seen when plotting the
modulus of the largest eigenvalue before and after
a flip or saddle-node bifurcation is quite expected.
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At the bifurcation point, the modulus of the largest
eigenvalue spikes up to one, and then just as quickly
drops back down. The largest Lyapunov exponent’s
behavior coincides with this behavior. What hap-
pens at the bifurcation into chaos is not surprising
either. The modulus of the largest eigenvalue spikes
to one, the largest Lyapunov exponent spikes to
zero, and it then proceeds to rise above zero. At
this point we can no longer calculate the largest
eigenvalue (or any eigenvalues) in a theoretic sense,
but we continue to track the Lyapunov exponent
numerically. The modulus of the largest eigenvalue
is greater than one.

4.6.2. Dynamics in the chaotic region

The chaotic region shows the least apparent dy-
namic variability of any region. For the most part,
the return maps of the chaotic regions all look very
similar. (Much of this could of course be due to
that fact that we are projecting many dimensions
on a plane.) As previously discussed, when n is in-
creased, the range of the yt values increases, (due to
the β scaling) but that is the extent of the apparent
variability.

At low d the chaotic region is highly nonuni-
form. The chaotic region contains windows of:
Period-doubling sequences, limit cycles, low-period
orbits bifurcating to Hopf and then back into chaos;
basically every type of dynamics imaginable. As
previously stated, Figs. 3(a) and 4(a) are typical
of the dynamic diversity at low d. Figures 5(a)
and 6(a) are very different. Once the chaotic re-
gion is reached, the system remains chaotic until
it is forced to be periodic by the saturation of the
squashing function. Figure 5(a) is an example of
what we call point-intermittent chaos. The chaotic
region is strongly dominated by a period-8 cycle
with chaos. The chaotic region in Fig. 5(a) is the
region corresponding to the positive Lyapunov ex-
ponent region in Fig. 5(b). Figure 6(a) has a much
stronger chaotic region than Fig. 5(a), suggesting
that increasing the available complexity (increase
in n), increases the chaos. Figure 6(a) is typical of
high d dynamics, limit cycles leading into a highly
chaotic region.

4.6.3. Point-intermittent chaos

The chaotic region in Fig. 5 is especially interest-
ing. When the network corresponding to Fig. 5 is

saturated, i.e.

tanh

sωi0 + s
d∑
j=1

ωijyt−j

 = ±1 ∀i, j (19)

then there are eight possible states per dimension.2

(The upper bound on the period is then d2n.) The
system is chaotic when the squashing function is
not quite saturated. For most of the trajectory
the squashing function is saturated and the trajec-
tory tends toward one of the eight attracting points.
Certain combinations of inputs cause a neuron to
become unsaturated, causing a point that misses
the attracting set by a significant amount caus-
ing a positive largest Lyapunov exponent at that
time step. This miss effectively resets the peri-
odic orbit; it also adds a nonattracting point to
the y array. A periodic orbit is interrupted be-
fore it has completed one period by an intermit-
tent point that is not one of the attracting points.
After this miss occurs, the time-series resumes and
again consists of points in the attracting set. If
the system misses the attracting set enough times,
the largest Lyapunov exponent will become posi-
tive on average. The average time between misses
is proportional to s. This behavior creates a se-
quence of periodic trajectories that are strung to-
gether by these points that miss the periodic orbit.
The system is locally (over a short, periodic region)
not chaotic, but, because of the averaging, globally
chaotic.

The focus now is the cause of missing the peri-
odic points. Computers have round-off errors which
can play a significant role in the dynamics; we ar-
gue that the chaos in Fig. 5 not such an artifact.
Consider a function

ψ =

{±1 for |x| > a

tanh(x) for |x| ≤ a
(20)

When all |x| > a the system is finite state and
periodic. When |x| is not greater than a for all
x, then there are an infinite number of states that
occur along with the eight attracting points. Ev-
ery missed point not only “resets” the period, but
since it adds a new point into the yt array, allows
for the possibility of saturating ψ in a different way
than the 8 attracting points could. The existence
of these intermittent points giving rise to other,

2There happen to be eight states for this system; there is a possibility of 2n states. We will discuss this in a later section.
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different intermittent points, allows for an infi-
nite number of possible intermittent points. As s
is increased, the probability that ψ will be satu-
rated increases, thus giving rise to less intermittent
points.

4.7. Dynamics after the chaotic region

The dynamics after the chaotic region (large s) are
quite interesting and surprising. At low d (Figs. 3
and 4), there is a rapid (i.e. one or two increments
of s), transition from chaos to periodicity. At low d,
increasing n increases the complexity, as can be seen
by comparing Figs. 3 and 4; high n tends to have a
greater chance of chaotic windows after the periodic
behavior starts, but the dynamics are qualitatively
the same.

As before, at high d [Figs. 5(a) and 6(a)] the
situation is quite different. At low n the transition
from the chaotic to periodic region is quite difficult
to find. Often there are strong periodic regions,
with very small windows of high-period, quasiperi-
odic, and chaotic orbits. If s is increased enough,
the system becomes purely periodic. At high n the
chaotic region occurs over a much larger range of
s. It is not until s is made very large (1000), that
the periodicity becomes prominent. In this region,
the transition between chaos and periodicity is very
similar to that of the lower-n case, only much more
gradual.

4.7.1. Theoretical argument for
the highest final period

As the s parameter is taken to infinity, for all practi-
cal purposes (i.e. using a machine with limited pre-
cision), the squashing function becomes a binary or
step function. This implies that the system must
repeat, and thus cannot be chaotic. The dynamics
at high s consist of periodic orbits of varying pe-
riod. There is often a dominant period, but even at
s values as high as 1024 we see periodic windows.
At high s, each neuron has two states, there are d
sets of n neurons, and thus the highest period the
networks can see is:

Ph = d2n (21)

We ran some experiments replacing the hyperbolic
tangent squashing function with a step function. At
very low d we did see Eq. (21) reached. At d greater
than 4 we never observed periods as high as Eq. (21)
(c.f. [Kauffman, 1993]).

4.8. Interpretation of
the qualitative results

Since all our results after the first bifurcation are
very qualitative, we would like to give some general
interpretations of the results. Increasing n as could
be deduced from reading [Hornik et al. 1989, 1990],
smoothes the dynamics. Increasing n also increases
the available dynamics, thus increasing the com-
plexity, which increases both the probability and
strength of chaos. Increasing n increases the abil-
ity to approximate, thus more dynamics can be ac-
counted for, and seen. The d parameter increases
the embedding dimension of the network and in-
creases the probability of chaos. Another effect of
increasing d is the slowing of the dynamics. This
decreases the largest Lyapunov exponent and also
smoothes the dynamics. At high d most of the sys-
tems appear very similar, whereas for low d the dy-
namics are quite diverse. Low-d networks are al-
most exclusively nonchaotic. Since we looked only
at cases we knew were chaotic, we sampled little of
the low-d network space. Many low-d networks stay
at fixed points throughout the range of s considered
and thus look quite similar. Thus the apparent di-
versity of the low-d networks might be due to the
fact that we are only sampling 4 to 10 percent of
the low-d space.

5. Conclusion

The major results of this study are: (1) as the num-
ber of degrees of freedom are increased, the proba-
bility of chaos approaches unity given a system that
is sufficiently nonlinear, (2) as the dimension is in-
creased, the most probable first bifurcation is Hopf;
the probabilities of saddle-node and flip bifurcations
are equal, and (3) qualitatively the quasiperiodic
route to chaos is the most probable as the dimension
is increased. The generality of the results hinges on
the methods used to assign the weight matrices, but
given the conditions above, the results are general.
The source code and additional details can be found
at http://sprott.physics.wisc.edu/neural/.
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